Государственное автономное профессиональное образовательное учреждение Саратовской области

«Вольский медицинский колледж им. З.И.Маресевой»

Методическое указания по выполнению контрольной работы по учебной дисциплине

Аналитическая химия

Очно-заочная форма обучения

специальность 33.02.01 Фармация

Рассмотрено и утверждено на заседании ЦМК общепрофессиональных дисциплин протокол №1 от 02 сентября 2024 г.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

На отделении переподготовки специалистов для студентов, обучающихся по индивидуальному плану, предусмотрено выполнение контрольной работы.

Выполнению контрольной работы должно предшествовать полное усвоение курса по темам, которые представлены в учебно-тематическом плане.

Каждый студент должен выполнить один вариант.

Студенты, фамилии которых начинаются с букв:

Ю, К, Н,У – выполняют	вариант № 1,
С, Б, Ш, О, Э–	вариант № 2,
В, И, Х ,Щ,–	вариант № 3,
Г, Р, Л, Ч, Ц-	вариант № 4,
Я, Е, Т, М, Д, –	вариант № 5,
А,Ф3,П,Ж-	вариант № 6.

Работы, выполненные не по своему варианту, проверяться не будут.

Текст работы оформляется на бумаге стандартного формата A-4 (210x290 мм) в <u>печатном</u> виде.

Вопросы, возникшие при выполнении контрольной работы можно задать преподавателю Деревягиной Светлане Владимировне НА ЭЛ.ПОЧТУ derevygina74@mail.ru

Работа сдается в учебную часть НЕ ПОЗДНЕЕ. 14 апреля

СХЕМА ТИТУЛЬНОГО ЛИСТА

Государственное автономное профессиональное образовательное учреждение Саратовской области

"Вольский медицинский колледж им. З. И. Маресевой"

Контрольная работа по учебной дисциплине

Аналитическая химия

Вариант:

Выполнил:

студент ФИО

группы

Проверил:

	ТЕМАТИЧЕСКИЙ ПЛАН 2024-2025
Раздел 1. Введение в а	налитическую химию
Тема 1.1.	Содержание учебного материала
Введение	Аналитическая химия, ее значение и задачи. Развитие аналитической химии, вклад русских ученых в развитие аналитической химии. Связь аналитической химии с другими дисциплинами. Объекты аналитического анализа. Методы химического анализа. Основные характеристики методов. Требования, предъявляемые к анализу веществ. Современные достижения аналитической химии как науки.
Тема 1.2.	Содержание учебного материала
Растворы. Химическое равновесие. Закон действующих масс. Кислотно-основное равновесие.	Способы выражения состава раствора. Химическое равновесие. Закон действующих масс. Константа химического равновесия, способы ее выражения. Общие понятия о растворах. Слабые, сильные электролиты. Смещение химического равновесия. Расчет равновесных концентраций. Электролитическая диссоциация воды. Ионное произведение воды.
Равновесие в	Водородный и гидроксильный показатели. Растворимость. Равновесие в
гетерогенной системе раствор – осадок	гетерогенной системе раствор-осадок. Произведение растворимости (ПР). Условия образования и растворения осадков. Дробное осаждение и разделение. Равновесие в растворах кислот и оснований. Влияние рН раствора на диссоциацию кислот и оснований. Факторы, влияющие на растворимость труднорастворимых электролитов.
Раздел 2. Качественны	
Тема 2.1.	Содержание учебного материала
Методы качественного анализа	Реакции, используемые в качественном анализе. Реакции разделения и обнаружения. Селективность и специфичность аналитических реакций. Условия выполнения реакций. Чувствительность. Факторы, влияющие на чувствительность. Реактивы: частные, специфические, групповые. Классификация ионов. Кислотно-основная классификация. Методы качественного анализа. Дробный и систематический анализ.
Тема 2.2.	Содержание учебного материала
Катионы I аналитической группы. Катионы II аналитической группы	Катионы I аналитической группы. Общая характеристика. Свойства катионов натрия, калия, аммония. Реактивы. Условия осаждения ионов калия и натрия в зависимости от концентрации, реакции среды, температуры. Применение их соединений в медицине. Катионы II аналитической группы. Общая характеристика. Свойства катионов серебра, свинца (II). Групповой реактив. Его действие. Реактивы. Значение соединений катионов II группы в медицине.
Тема 2.3.	Содержание учебного материала

Катионы III аналитической группы. Катионы IV аналитической группы	Катионы III аналитической группы. Общая характеристика. Свойства катионов бария, кальция. Групповой реактив. Его действие. Реактивы. Значение соединений катионов III группы в медицине. Понятие о произведении растворимости. Условия осаждения и растворения малорастворимых соединений в соответствии с величинами ПР. Катионы IV аналитической группы. Общая характеристика. Свойства катионов алюминия, цинка. Значение и применение гидролиза и амфотерности при открытии и отделении катионов IV группы. Групповой реактив. Его действие. Реактивы. Применение соединений в медицине. Качественные реакции на катионы III и IV аналитических групп.
Тема 2.4. Катионы V аналитической группы. Катионы VI аналитической группы	Содержание учебного материала Катионы V аналитической группы. Общая характеристика. Свойства катионов железа (II, III), магния. Окислительно-восстановительные реакции и использование их при открытии и анализе катионов V группы. Применение соединений катионов V аналитической группы в медицине. Катионы VI аналитической группы. Общая характеристика. Свойства катиона меди II. Реакции комплексообразования. Использование их при открытии катионов VIгруппы. Групповой реактив. Его действие. Применение соединений меди в медицине. Качественные реакции на катионы V и VI аналитических групп.
Тема 2.5. Катионы І- VІаналитических групп	Содержание учебного материала Систематический анализ смеси катионов I-VI группы.
Тема 2.6. Анионы І- ІІІ аналитических групп	Содержание учебного материала Общая характеристика анионов и их классификации. Анионы окислители, восстановители, индифферентные. Предварительные испытания на присутствие анионов-окислителей и восстановителей. Групповые реактивы на анионы и условия их применения: хлорид бария, нитрат серебра. Качественные реакции на анионы І группы: сульфат-ион, сульфит-ион, тиосульфат-ион, фосфат-ион, карбонат-ион, гидрокарбонат-ион, оксалат-ион, борат-ион. Групповой реактив. Применение соединений в медицине. Качественные реакции на анионы ІІ группы: хлорид-ион, бромид-ион, иодидион. Групповой реактив. Применение в медицине.Качественные реакции на анионы ІІІ группы: нитрат-ион, нитрит-ион. Групповой реактив. Применение в медицине. Анализ смеси анионов трех аналитических групп. Качественные реакции на анионы І-ІІІ аналитических групп. Анализ смеси анионов І — ІІІгрупп. Анализ неизвестного вещества.
Раздел З. Количествен	
Тема 3.1.	Содержание учебного материала

	T a		
Титриметрические	Основные сведения о титриметрическом анализе, его особенности и		
методы анализа	преимущества. Требования к реакциям. Точка эквивалентности и способы ее		
	фиксации. Индикаторы. Классификация методов.		
	Способы выражения концентрации рабочего раствора. Растворы с молярной		
	концентрацией эквивалента, молярные растворы. Титр и титрованные		
	растворы. Растворы с титром приготовленным и титром установленным.		
	Исходные вещества. Требования к исходным веществам. Понятие о		
	поправочном коэффициенте. Стандарт-титр (фиксаналы). Прямое, обратное		
	титрование и титрование заместителя. Вычисления в титриметрическом		
	методе. Измерительная посуда: мерные колбы, пипетки, бюретки и другие.		
	Титриметрические методы анализа. Работа с мерной посудой, с		
	аналитическими весами. Решение задач по количественному анализу.		
Тема 3.2.	Содержание учебного материала		
Методы кислотно-	Основное уравнение метода. Рабочие растворы. Стандартные растворы.		
основного титрования	Индикаторы. Ацидиметрия и алкалиметрия. Порядок и техника титрования.		
	Расчеты. Использование метода при анализе лекарственных веществ.		
	Методы кислотно-основного титрования. Метод ацидиметрии. Определение		
	массовой доли гидрокарбоната натрия в растворе. Метод алкалиметрии.		
	Определение массовой доли раствора кислоты хлороводородной.		
Тема 3.3.	Содержание учебного материала		
Методы	Перманганатометрия. Окислительные свойства перманганата калия в		
окислительно-	зависимости от реакции среды. Вычисление эквивалента перманганата калия в		
восстановительного	зависимости от среды раствора. Приготовление раствора перманганата калия.		
титрования	Исходные вещества в методе перманганатометрии. Приготовление раствора		
	щавелевой кислоты. Определение молярной концентрации эквивалента и титра		
	раствора перманганата калия по раствору щавелевой кислоты. Использование		
	метода для анализа лекарственных веществ.		
	Йодометрия. Химические реакции, лежащие в основе йодометрического метода.		
	Приготовление рабочих растворов йода и тиосульфата натрия, дихромата калия.		
	Условия хранения рабочих растворов в методе йодометрии. Крахмал как		
	индикатор в йодометрии, его приготовление. Использование метода йодометрии		
	в анализе лекарственных веществ.		
	Метод нитритометрии. Рабочий раствор. Стандартный раствор. Фиксирование		
	точки эквивалентности с помощью внешнего и внутренних индикаторов. Условия		
	титрования. Примеры нитритометрического определения. Использование метода		
	для анализа лекарственных веществ.		
	Метод броматометрии. Рабочий раствор. Стандартный раствор. Химические		
	реакции, лежащие в основе метода, применение метода. Условия титрования.		
	Способы фиксации точки эквивалентности. Использование метода для анализа		
	лекарственных веществ.		
	Методы окислительно-восстановительного титрования. Определение массовой		
	доли пероксида водорода в растворе. Определение массовой доли йода в		
	растворе.		

Тема 3.4.	Содержание учебного материала		
Методы осаждения	Аргентометрия.		
	Методы аргентометрии. Определение массовой доли натрия хлорида –		
	вариантом Мора. Определение массовой доли калия иодида – вариантом		
	Фаянса. Определение массовой доли калия бромида вариантом Фольгарда.		
Тема 3.5.	Содержание учебного материала		
Метод	Общая характеристика метода комплексонометрии. Индикаторы. Титрование		
комплексонометрии	солей металлов.		
	Влияние кислотности растворов (рН). Буферные растворы. Использование		
	метода при анализе лекарственных веществ.		
	Метод комплексонометрии. Определение содержания хлорида кальция		
	(магния сульфата) и цинка сульфата в растворе.		
Тема 3.6.	Содержание учебного материала		
Инструментальные	Классификация методов. Обзор оптических, хроматографических и		
методы анализа	электрохимических методов. Рефрактометрия. Расчеты.		
	Инструментальные методы анализа. Определение массовой доли		
	однокомпонентных растворов методом рефрактометрии.		
	Инструментальные методы анализа. Применение инструментальных методов		
	анализа в анализе лекарственных средств.		

- 1. Что такое качественный анализ?
- 2. Написать групповой реагент у катионов по аммиачно-фосфатной классификации

Группа	Катионы	Групповой реагент
I	Na ⁺ ,	
II	Li ⁺ , Mg ²⁺	

- 3. Количественное определение однокомпонентных систем методом рефрактометрии
- 4. Какой метод называют методом перманганатометрии?
- 5. Какой индикатор применяют в методе йодометрии?
- 6.В мерную колбу ёмкостью 100 мл перенесли 0,6504 г продажной щавелевой кислоты, растворили и довели объём раствора до метки. Пипеткой брали по 10,00 мл полученного раствора и тировали 0,1026 н. раствором гидроксида натрия, расход которого в среднем составил 9,85 мл. Определите процентное содержание $H_2C_2O_4$ •2 H_2O_3 в продажной щавелевой кислоте.

- 7.Каково процентное содержание $H_2C_2O_4$ •2 H_2O в образце щавелевой кислоты, если на титрование 0,1500 г его пошло 25,60 мл 0,09002 н. едкого натра?
- 8.Окислительно-восстановительные реакции

Реакции компропорционирования (синпропорционирования):

$$IO_3^- + 5I^- + 6H^+ \leftrightarrow \dots$$

- 9.Вычисления в титриметрическом методе.
- 10.Индикаторы при титриметрическом анализе
- 11. По каким причинам в ходе анализа могут возникать ошибки взвешивания и отмеривания?
- 12. Какие реакции используют для гравиметрического анализа $\stackrel{3+}{\text{Fe}}$?
- 13.Вариант Фаянса основное уравнение, условия титрования, использование адсорбционных индикаторов: бромфенолового синего, эозината натрия для определения галогенидов, титрант, среда, индикатор, уравнения реакции, определение точки эквивалентности.
- 14.Метод броматометрии. Рабочий раствор. Стандартный раствор. Химические реакции, лежащие в основе метода, применение метода. Условия титрования. Способы фиксации точки эквивалентности. Использование метода для анализа лекарственных веществ.
- 15.Как классифицируют электролиты по способности ионизировать?

- 1. Что такое количественный анализ?
- 2. Написать групповой реагент у катионов по аммиачно-фосфатной классификации

Группа	Катионы	Групповой реагент
I	NH ₄ ⁺	
II	Ca ²⁺ , Sr ²	

- 3. Количественное определение многокомпонентных систем методом рефрактометрии
- 4. При каких условиях выполняют титрование методом перманганатометрии?
- 5. Какие рабочие растворы применяют в методе йодометрии?
- 6.Для количественного определения Ba^{2+} растворили навеску $BaCl_2 \cdot 2H_2O$ в 0,4526 г. Какой объем 2 н. раствора серной кислоты потребуется для полного осаждения ионов Ba^{2+} ?

- 7. Какую навеску хлорида бария $BaCl_2 \cdot 2H_2O$ нужно взять для определения содержания в нем бария?
- 8.Окислительно-восстановительные реакции

Реакции диспропорционирования:

 $2Cu^{^{\scriptscriptstyle +}} \, \leftrightarrow \, \ldots \ldots \ldots$

- 9. Растворы с молярной концентрацией эквивалента, молярные растворы при титриметрическом анализе
- 10. Требования к реакциям при титриметрическом анализе.
- 11. Какой состав имеет реактив Чугаева?
- 12. Как можно обнаружить при совместном присутствии Sn^{2+} , As III , Cr^{3+} .
- 13. Алкалиметрия. Порядок и техника титрования. Расчеты. Использование метода при анализе лекарственных веществ.
- 14.Инструментальные методы анализа. Порядок и техника определения. Примеры определения. Использование методов при анализе лекарственных веществ.
- 15. Что такое показатель преломления?

- 1. Что такое аналитический сигнал?
- 2. Написать групповой реагент у катионов по аммиачно-фосфатной классификации

Группа	Катионы	Групповой реагент
I	K ⁺ ,	
II	Bi ³⁺ , Fe ³⁺	

- 3.Определение массовой доли Трилона Б методом обратного комплексонометрического титрования
- 4. Какие вещества определят перманганатометрии методом?
- 5. Какое установочное вещество применяют в методе йодометрии?

- 6.Необходимо приготовить 500 мл раствора гидроксида натрия с молярной концентрацией эквивалента 0,1 н. из раствора щелочи с массовой долей 13,28%, плотностью p=1,145 г/см³.
- 7.Вычислите объём 0,02 н. раствора HCl, который можно приготовить из фиксанала (0,1 мольэкв).
- 8.Окислительно-восстановительные реакции

Гетерогенные реакции между ионами в растворе и твердыми веществами:

$$Cu^{2+}$$
 + Fe (TB.) \leftrightarrow

- 9.Точка эквивалентности и способы ее фиксации при титриметрическом анализе.
- 10.Понятие о поправочном коэффиценте при титриметрическом анализе.
- 11. Какие вещества называют амфотерными?
- 12. Какие соли подвергают гидролизу?
- 13. Ацидиметрия. Порядок и техника титрования. Расчеты. Использование метода при анализе лекарственных веществ.
- 14.Общая характеристика метода комплексонометрии. Индикаторы. Титрование солей металлов.
- 15. Что такое металлохромные индикаторы?

- 1. Что такое фармацевтический анализ?
- 2. Написать групповой реагент у катионов по аммиачно-фосфатной классификации

Группа	Катионы	Групповой реагент
I	Na ⁺ ,	
II	Fe ²⁺ ;Al ³⁺ , Cr ³⁺ ,	

- 3. Рефрактометрия. Расчеты.
- 4. Как фиксируют точку эквивалентности в методе перманганатометрии?
- 5. Какие вещества количественно определяют методом йодометрии?

- 6.Определить содержание чистого $BaCl_2 \cdot 2H_2O$ в образце технического хлорида бария. Навеска составляет 0,5956 г. Масса осадка сульфата бария $BaSO_4$ после прокаливания равна 0,4646 г.
- 7.Определите нормальность раствора KMnO₄, если на титрование 10,0 мл его раствора было израсходовано 12,5 мл 0,1 н. раствора щавелевой кислоты.
- 8.Окислительно-восстановительные реакции

Эти реакции связаны с переносом электронов и могут протекать в различных формах.

Простой обмен электронами:

$$Ce^{4+} + Fe^{2+} \leftrightarrow \dots$$

- 9.Исходные вещества. Требования к исходным веществам при титриметрическом анализе.
- 10. Растворы с титром приготовленным и титром установленным при титриметрическом анализе.
- 11. Какие виды адсорбентов применяют в анализе?
- 12. Зависит ли константа равновесия от концентраций реагирующих веществ?
- 13.Метод нитритометрии. Рабочий раствор. Стандартный раствор. Фиксирование точки эквивалентности с помощью внешнего и внутренних индикаторов. Условия титрования. Примеры нитритометрического определения. Использование метода для анализа лекарственных веществ
- 14.Вариант Мора титрант, среда, индикатор, переход окраски, основное уравнение реакции, применение в фармацевтическом анализе.
- 15. Что лежит в основе осадочной хроматографии

- 1. Что такое капельный анализ?
- 2. Написать групповой реагент у катионов по аммиачно-фосфатной классификации

Группа	Катионы	Групповой реагент
I	$\mathrm{NH_4}^+$	
II	Ba ²⁺ , Mn ²⁺ , Fe ²⁺	

- 3. Количественное определение ингредиентов лекарственных смесей в неводных растворителях методом рефрактометрии
- 4. Какие установочные вещества применяют для стандартизации раствора **KMnO**₄?
- 5. Какой метод носит название метода йодометрии?

6.Исходные данные: формула осадка BaSO₄; норма кристаллического осадка 0,5г.

Рассчитайте массу навески для приготовления децинормального раствора 250,0 мл щавелевой кислоты ($H_2C_2O_4$ •2 H_2O).

- 7. Вычислить рН буферной смеси, содержащей 0,01 М уксусной кислоты и 0,1 М ацетата калия?
- 8. Реакции комплексообразования

$$AgCl + 2NH_3 \leftrightarrow \dots$$

- 9.Титр и титрованные растворы.
- 10.Способы выражения концентрации рабочего раствора при титриметрическом анализе.
- 11. Что образуется при воздействии избытка $Na_2S_2O_3$ на раствор $AgNO_3$?
- 12. Охарактеризуйте растворимость хлорида серебра в воде, растворе аммиака.
- 13.Вариант Фольгарда уравнение метода, условия титрования, индикатор. Тиоцианометрия титрант, среда, индикатор, переход окраски, основное уравнение реакции, применение в фармацевтическом анализе.
- 14.Метод бромометрии. Рабочий раствор. Стандартный раствор. Химические реакции, лежащие в основе метода, применение метода. Условия титрования. Способы фиксации точки эквивалентности. Использование метода для анализа лекарственных веществ.
- 15. Тонкослойная хроматография. Использование метода для анализа лекарственных веществ.

- 1.Что такое дробный анализ?
- 2. Написать групповой реагент у катионов по аммиачно-фосфатной классификации

Группа	Катионы	Групповой реагент
I	NH ₄ ⁺	
II	Ca ²⁺ , Sr ²	

- 3. Количественное определение концентрированных растворов лекарственных веществ методом рефрактометрии
- 4. Какие методы называются методами окислительно- восстановительного титрования?
- 5. Какие способы титрования используют в методе йодометрии?

- 6.Вычислить (H^+] и pH раствора, содержащего 1 л 0.06 моль уксусной кислоты и 0.02 моль ацетата натрия.
- 7.Вычислить титр и нормальность раствора NaOH, если на титрование 0,1030 г щавелевой кислоты израсходовано 21,2 см³ раствора NaOH.

Реакции комплексообразования

$$8.Cu(H_2O)_4^{2+} + 4NH_3 \leftrightarrow \dots$$

- 9.Основные сведения о титриметрическом анализе, особенности и преимущества его.
- 10. Классификация методов при титриметрическом анализе.
- 11. Механизм действия аммонийного буфера
- 12.В каких случаях для определения веществ применяют алкалиметрическое титрование" В чем его суть?
- 13.Электрохимические методы анализа.
- 14. Перманганатометрия. Рабочий раствор. Стандартный раствор. Фиксирование точки эквивалентности с помощью внешнего и внутренних индикаторов. Условия титрования. Примеры определения. Использование метода для анализа лекарственных веществ
- 15. Какие виды адсорбции существуют?

- 1.Чем больше коэффициент чувствительности, тем:
- 1. большие количества компонента можно обнаружить (определить);
- 2. меньшие количества компонента можно обнаружить (определить);
- 3. большую величину навески надо брать для анализа;
- 4. больше титранта надо добавлять при параллельных определениях
- 2.Метод анализа это:
- 1. совокупность действий, целью которых является получение информации о химическом составе объекта;
- 2. краткое изложение принципов, положенных в основу анализа вещества (без указания определяемого компонента и объекта);
- 3. явление, которое используется для получения аналитической информации;
- 4. подробное описание выполнения анализа данного объекта с использованием выбранного метода, которое обеспечивает регламентированные характеристики правильности и воспроизводимости.
- 3.Явление, которое используется для получения аналитической информации, называется:

- 1. метод анализа; 3. принцип анализа;
- 2. методика анализа; 4. объект анализа
- 4. Укажите самый сильный восстановитель:
- 1. $Zn (E^0(Zn^{2+}/Zn) = -0, 76 B);$
- Mg ($E^0(Mg^{2+}/Mg) = -2$, 37 B);
- 3. H_2 ($E^0(2H^+/H_2) = 0$ B);
- 4. $Na_2S_2O_3$ (E⁰($S_4O_6^-/2S_2O_3^{2-}$) = +0,09 B)
- 5.Обнаружение и идентификация компонентов анализируемого образца задача анализа:
- 1. количественного; 2. качественного; 3. элементного; 4. фазового
- 6.Обнаружить индивидуальные химические соединения, характеризующиеся определенной молекулярной массой, позволяет:
- 1. фазовый анализ; 3. молекулярный анализ;
- 2. изотопный анализ; 4. элементный анализ
- 7.Укажите если таковое имеется правильное выражение для концентрационного произведение растворимости (K_s) соли $Ca_3(PO_4)_2$:
- 1. $K_s = a (Ca^{2+})^3 \cdot a(PO_4^{3-})^2$; 3. $K_s = a [Ca^{2+}]^3 \cdot a[PO_4^{3-}]^4$
- 2. $K_s = a [Ca^{2+}] \cdot a [PO_4^{3-}];$ 4. правильного ответа нет
- 1.концентрация пересыщенного раствора
- 2.общая концентрация вещества в насыщенном растворе;
- 3. концентрация ненасыщенного приданной температуре раствора;
- 4. качественная характеристика способности данного вещества к растворению при данной температуре
- 9.Если масса анализируемой пробы больше 0,1 г, то проводят:
- 1. микроанализ; 3. макроанализ;
- 2. полумикроанализ; 4. ультрамикроанализ
- $10.K\ 1$ л воды добавили 1 мл раствора NaOH с pH 13. Значение pH образовавшегося раствора: 1. pH=12; 2.pH=13; 3.pH=10; 4. pH = 6
- 11.Не является обязательным компонентом комплексного соединения:
- 1. комплексообразователь; 3. внешняя сфера;
- 2. лиганд; 4. внутренняя сфера

- 12.Окислитель это:
- 1. соединение, отдающее электроны в реакции;
- 2. соединение, принимающее электроны в реакции;
- 3. соединение, определяющее рН среды;
- 4. соединение, выпадающее в осадок
- 13.Отношение количества растворенного вещества к объему раствора это:
- 1. моляльность растворенного вещества;
- 2. титр раствора;
- 3. молярная концентрация растворенного вещества;
- 4. массовая доля
- 14.Отношение количества растворенного вещества к массе растворителя это:
- 1. титр раствора;
- 2. молярная концентрация растворенного вещества;
- 3. моляльность;
- 4.массовая доля растворенного вещества
- 15. Аналитический сигнал в принципе может давать:
- 1. только количественную аналитическую информацию;
- 2. только качественную аналитическую информацию
- 3. и качественную и количественную аналитическую информацию;
- 4. всегда одновременно и качественную и количественную аналитическую информацию
- 16.Интенсивность аналитического сигнала зависит:
- 1. от расчетной формулы;
- 2. от объема мерной колбы;
- 3. содержания (концентрации) анализируемого компонента;
- 4. скорости проведения процесса
- 17. Чувствительность это:
- 1. минимальное количество вещества, которое можно обнаружить или определить;
- 2. минимальное количество (объем) титранта, которое идет на титрование;
- 3. максимальное количество вещества, которое можно обнаружить или определить;
- 4. минимальная навеска, которую можно взвесить на аналитических весах
- 18.Смешаннолигандные комплексы это:
- 1. комплексы, включающие два центральных атома;
- 2. координационно-ненасыщенные комплексы;
- 3. комплексы, включающие два и более вида лиганда;
- 4. комплексы, координационно-насыщенные
- 20. Константой, характеризующей комплексное соединение, является:
- 1. константа автопротолиза;
- 2. константа кислотности:

- 3. константа устойчивости;
- 4. константа растворимости

- 1.Для количественной характеристики силы кислот, находящихся в растворе, используют константу:
- 1. кислотности (K_a) ; 3. растворимости (K_S) ;
- 2. автопротолиза (K_W); 4. образования (β_n)
- 2.К протонным растворителям
- 1. гексан; 2. бензол; 3. уксусная кислота; 4. ацетон относится:
- 3.К апротонным полярным растворителям относится:
- 1. диметилформамид; 2. гексан; 3. бензол; 4. тетрахлорметан
- 4.К амфотерным растворителям относится:
- 1. уксусная кислота; 2. аммиак; 3. вода; 4. бензол
- 5.Безразмерная величина, которая показывает, во сколько раз взаимодействие между двумя точечными электрическими зарядами в данной среде слабее, чем в вакууме носит название:
- 1. буферная емкость;
- 3. автопротолиз;
- 2. диэлектрическая проницаемость; 4. фотолиз
- 6.Укажите буферный раствор:
- 1. смесь CH₃COOH и CH₃COONa; 3. смесь CH₃COOK и CH₃COONa;
- 2. смесь CH₃COOH и HCI; 4.смесь CH₃COOK и HCI
- 7.Сильнее диссоциирует в водном растворе при одинаковой концентрации:
- 1. этановая кислота ($pK_a = 4,75$); 3. катион аммония ($pK_a = 9,25$)
- 2. метановая кислота (p K_a = 3,80); 4. циановодородная кислота (p K_a = 9)
- 8.Самым слабым основанием в водном растворе при одинаковой концентрации является: 1. гуанидин (р $K_B = 0.40$); 3. пиридин (р $K_B = 8.82$)
- 2. аммиак (p K_B = 4,75); 4. анилин (p K_B = 9,37)
- 9.Определяемые компоненты, входящие в состав пробы, называют:
- 1. аналитами:
- 2. матрицей;

- 3. образцами;
- 4. составными частями
- 10. Наименьший объем пробы берут при проведении:
- 1. ультрамикроанализа; 3. субмикроанализа;
- 2. микроанализа;
- 4. полумикроанализа
- 11.К безэталонным методам анализа относятся
- 1. только гравиметрия;
- 2. титриметрия и некоторые другие методы;
- 3. только титриметрия и гравиметрия;
- 4. гравиметрия и некоторые другие методы
- 12.Количественной характеристикой способности лиганда участвовать в донорно-акцепторном взаимодействии при образовании комплексной частицы является:
- 1. дентатность;
- 2. максимальное координационное число;
- 3. характеристическое координационное число;
- 4. константа устойчивости
- 13. Катионы в аммиачно-фосфатной и сульфидной классификации делят:
- 1. на 5 групп; 2. на 4 группы; 3. на 3 группы; 4. на 6 групп
- 14.Для отделения Pb^{2+} , Ag^{+} , Hg_2^{2+} по кислотно-основной схеме анализа используют:
- 1. 2M HCI; 2. 2M H₂SO₄; 3. 6M NaOH+H₂O₂; 4. 6M NH₃
- 15.Для комплексов с полидентантнымилигандамикоррдинационное число равно:
- 1. число лигандов умножить на дентантность;
- 2. число лигандов разделить на дентантность;
- 3. дентантность минус число лигандов;
- 4. дентантность плюс число лигандов
- 16.Осадок CaCO₃ выпадет, если ($K_S = 4.8 \cdot 10^{-9}$):
- 1. $[Ca^{2+}] = [CO_3^{2-}] = 10^{-6}$ моль/л;
- 2. $[Ca^{2+}] = 10^{-3}$ моль/л; $[CO_3^{2-}] = 10^{-6}$ моль/л;
- 3. $[Ca^{2+}] = 10^{-3}$ моль/л; $[CO_3^{2-}] = 10^{-3}$ моль/л;
- 4. $[Ca^{2+}] = 10^{-9}$ моль/л; $[CO_3^{2-}] = 10^{-3}$ моль/л
- 17.В зависимости от числа атомов металла комплексы бывают:
- 1.моноядерные;
- 2. катионные;
- 3. однороднолигандные;
- 4. разнолигандные

- 18. Что из нижеприведенного верно:
- 1. растворить осадок можно за счет связывания одного из ионов осадка в малодиссоциирующее соединение;
- 2. растворить осадок можно путем добавления небольшого избытка осадителя;
- 3. растворить осадок можно путем добавления посторонних ионов, увеличивающих ионную силу раствора;
- 4. растворить осадок нельзя, связывая один из ионов осадка в комплексные соединения
- 19. Укажите самый сильный окислитель:
- 1. $Br_2(E^0(Br_2/2Br^-) = +1,06 B);$
- 2. NaBiO₃(E⁰(BiO₃⁻/Bi³⁺) = +1,80 B);
- 3. KMnO₄ (E⁰(MnO₄²⁻/Mn²⁺) = +1,51 B);
- 4. $CI_2(E^0(CI_2/2CI^-) = +1,36 B)$
- 20. Нижняя граница определяемых содержаний используется:
- 1. для характеристики чувствительности в качественном анализе;
- 2. в количественном анализе;
- 3. и в качественном и в количественном анализе;
- 4. для характеристики воспроизводимости

- 1.По теории жёстких и мягких кислот и оснований (ЖМКО) Ральфа Пирсона к жестким кислотам относятся катионы:
- 1. серебра; 3. ртути;
- 2. водорода; 4. кадмия
- 2.Из перечисленных циклических структур наиболее устойчивы при образовании хелатов:
- 1. четырехчленные циклы; 2. трехчленные циклы;
- 3. пятичленные циклы; 4. семичленные циклы
- 3.Укажите правильное выражение для термодинамической константы равновесия процесса растворения вещества $A_m B_n$:
- 1. $K_s = [A]^m [B]^n$;
- 2. $K_s = [A]^m [B]^n / [A_m B_n];$
- 3. $K_s^0 = a_A^m a_B^n$;
- $4.K_{s}' = C_{A}{}^{m}C_{B}{}^{n}$
- 4.В системе будет преобладать процесс образования осадка, если произведение концентраций (активностей) ионов, взятых в степенях равных стехиометрическим коэффициентам:
- 1. меньше величины произведения растворимости данного электролита;
- 2. больше величины произведения растворимости данного электролита;
- 3. равно величине произведения растворимости данного электролита;
- 4. меньше или равно величине произведения растворимости данного электролита
- $5.\mathrm{B}\ 1$ л воды может раствориться 10^{-5} моль AgCI. Произведение растворимости данного соединения равно:
- 1. 10^{-5} ; 2. 10^{-10} ; 3. 10^{-15} ; 4. 10^{-20}

- 6. Реальное концентрационное произведение растворимости (K_s) выражается через:
- 1. активности ионов осадка;
- 2. равновесные концентрации ионов осадка;
- 3. общие концентрации ионов-осадителей;
- 4. концентрации ионов, вызывающих электростатическое взаимодействие
- 7.К методам разделения и концентрирования, основанным на различиях в скорости пространственного перемещения веществ в пределах одной фазы, относится:
- 1. селективное растворение;
- 2. экстракция;
- 3. электроосмос;
- 4. ультрацентрифугирование
- 8.Процесс поглощения газов, паров и растворенных веществ твердыми или жидкими поглотителями на твердом носителе, носит название:
- 1. возгонка; 2. электродиализ; 3. сорбция; 4. электрофорез
- 9.«Солевой эффект» это:
- 1. увеличение растворимости осадка под действием комплексующего агента;
- 2. уменьшение растворимости под действием одноименного иона;
- 3. увеличение растворимости осадка под действием посторонних сильных электролитов;
- 4. увеличение растворимости осадка за счет образования малодиссоцинрующего электролита
- 10.1,5-кратный избыток осадителя (NaC1) на полноту осаждения AgC1 влияет следующим образом:
- 1. растворимость уменьшается; 3. растворимость не изменяется;
- 2. растворимость увеличивается; 4. образование осадка не происходит
- 11. Наибольшей растворимостью в воде обладает:
- 1. BaCO₃(K_S = 4,0 ·10⁻¹⁰); 3. BaC₂O₄(K_S = 1,1 ·10⁻⁷);
- 2. BaCrO₄ (K_S = 1,2 · 10⁻¹⁰); 4. BaSO₃ (K_S = 8,0 · 10⁻⁷)
- 12.Укажите осадок, растворимый в разбавленной HNO₃:
- 1.AgCI; 2. Cu(OH)₂; 3. BaSO₄; 4. правильного ответа нет
- 13. Проба, которая отбирается непосредственно из анализируемого объекта, называется:
- 1. лабораторная;
- 2. средняя;
- 3. генеральная;
- 4. анализируемая
- 14.Вакуумные мерные колбы или бюретки с соответствующей запорной жидкостью используются для отбора проб:
- 1. жидких;
- 2. газообразных;

- 3. твердых и жидких;
- 4. твердых
- 15.Укажите осадок, растворимый в растворе NH₃:
- 1. AgCI; 2. Fe(OH)₃; 3. BaSO₄; 4.MnO(OH)₂
- 16.Максимальное координационное число центрального атома (комплексообразователя) определяется:
- 1. природой металла; 3. строением органического реагента;
- 2. природой лиганда; 4. строением комплексного соединения
- 17.Если к раствору с одинаковой концентрацией NaCI, NaBrO₃, NaIO₃, NaBr, NaI прибавляют постепенно AgNO₃, то первым выпадет в осадок:
- 1. AgCI ($K_a = 1.8 \cdot 10^{-10}$); 3. AgBrO₃ ($K_a = 5.7 \cdot 10^{-5}$);
- 2. AgIO₃ ($K_a = 3.1 \cdot 10^{-8}$); 4. AgI ($K_a = 8.3 \cdot 10^{-17}$)
- 18.Совокупность действий, целью которых является получение информации о химическом составе объекта, носит название:
- 1. принцип анализа; 3. метод анализа;
- 2. анализ;
- 4. методика анализа
- 19. Частичное или полное растворение осадков может происходить при:
- 1.концентрировании раствора;
- 2. увеличении ионной силы;
- 3. уменьшении ионной силы;
- 4. удалении из раствора вещества, реагирующего с ионами, образующимися при растворении осадка
- 20. Гексационаферрат (III) калия образует с ионами железа (II):
- 1. малорастворимое соединение синего цвета («берлинскую лазурь»);
- 2. осадок синего цвета («турнбулеву синь»);
- 3. внутрикомплексное соединение красного цвета;
- 4. комплекс красно-бурого цвета

- 1.Чем легче частица отдает электроны, тем:
- 1. более сильным восстановителем она является;
- 2. менее сильным восстановителем она является;
- 3. более сильным окислителем она является;
- 4. менее сильным окислителем она является
- 2. Разность потенциалов, называемая электродным потенциалом возникает на границе раздела фаз:
- 1. металл–раствор;

- 2. раствор–раствор;
- 3. осадок раствор;
- 2. металл-металл
- 3.Потенциал полуреакции, измеренный при условии, что концентрации окисленной и восстановленной формы равны 1 моль/л, а концентрации посторонних ионов известны, носит название:
- 1. стандартный окислительный потенциал;
- 2. формальный электродный потенциал;
- 3. стандартный восстановительный потенциал;
- 4. стандартный электродный потенциал
- 4.К методам разделения и концентрирования, основанным на различиях в распределение веществ между фазами относится:
- 1. отгонка; 2. сорбция; 3. диализ; 4. возгонка
- 5.Метод разделения и концентрирования веществ, основанный на их различном распределении между двумя несмешивающимися жидкими фазами, носит название:
- 1. отгонка; 2. экстракция; 3. ультрафильтрация; 4. сорбция
- 6.К бидентантнымлигандам относятся:
- 1. молекулы воды;
- 2. молекулы аммиака;
- 3. молекулы этилендиамина;
- 4. гидроксид-ионы
- 7.Укажите какую функцию, и в какой среде, выполняет пероксид водорода, если $H_2O_2 \rightarrow H_2O$:
- 1. функцию окислителя в щелочной среде;
- 2. функцию окислителя в щелочной и нейтральной среде;
- 3. функцию окислителя в кислой среде;
- 4. функцию восстановителя в кислой или щелочной среде
- 8.Предел обнаружения это:
- 1. это наибольшее количество вещества, которое можно определить;
- 2. наименьшее содержание аналита, которое по данной методике с заданной доверительной вероятностью можно отличить от сигнала контрольного опыта;
- 3. величина, оцениваемая по наибольшему аналитическому сигналу;
- 4. область содержаний определяемого вещества в анализируемом объекте
- 9.В 1 л раствора содержится 0,001 моль CH_3COOH и 0,01 моль HCI. Величина pH данного раствора:
- 1. pH = 3; 2. pH = 7; 3. pH = 2; 4.pH = 5
- 10.С увеличением pH значение электродного потенциала окислительно-восстановительной пары $MnO_4^-+8H^++5\bar{e}=Mn^{2+}+4H_2O$:
- 1. уменьшится; 3. увеличится;
- 2. не изменится; 4. возможно и увеличение и уменьшение потенциала

- 11.Из перечисленных ионов можно окислить концентрированной азотной кислотой ($E^0(NO_3^-/NO)$ = +0,96 B) ион:
- 1. Cr^{3+} (E⁰($Cr_2O_7^{2-}/Cr^{3+}$) = +1,33 B)
- 2. KMnO₄ (E⁰(MnO₄²⁻/Mn²⁺) = +1,51 B);
- 3. $S^{2-}(E^0(S/S^{2-}) = -0.48 B);$
- 4. $CI^{-}(E^{0}(CI_{2}/2CI^{-}) = +1,36 B)$
- 12. Направление протекания окислительно-восстановительной реакции можно определить по:
- 1. $E^0_{\text{окислителя}}$;
- 2. ЭДС;
- 2. E⁰ восстановителя;
- 4. концентрации окислителя и восстановителя
- 13. Наименьшей растворимостью в воде обладает:

1.AgCI (
$$K_a = 1.8 \cdot 10^{-10}$$
); 3.AgBrO₃ ($K_a = 5.7 \cdot 10^{-5}$); 2. AgIO₃ ($K_a = 3.1 \cdot 10^{-8}$); 4. AgI ($K_a = 8.3 \cdot 10^{-17}$)

- 14.Если растворимость AgCNS в насыщенном водном растворе составляет 10^{-6} моль/л, то произведение растворимости AgCNS равно:
- 1. 10^{-6} ; 2. 10^{-12} ; 3. 10^{-18} ; 4. 10^{-24}
- 15.С помощью батометров проводят отбор проб:
- 1. жидких;
- 2. твердых и газообразных;
- 3. газообразных;
- 4. твердых
- 16.Процесс переведения определяемых компонентов пробы в физическую и химическую форму, которая наиболее приемлема для выбранного метода определения, носит название:
- 1. концентрирование;
- 2. разложение;
- 3. выделение;
- 4. разделение
- 17.К «мокрым» способам разложения пробы не относится:
- 1. прокаливание пробы на воздухе;
- 2. растворение фосфата в хлороводородной кислоте;
- 3. растворение в воде соли щелочного металла;
- 4. растворение сульфида в смеси HNO₃ и HCI
- 18.Процесс или операция, в результате которой компоненты, составляющие исходную смесь, отделяются один от другого, называется:
- 1. экстракция; 2. выделение; 3. разложение; 4. разделение
- 19.Коэффициентом распределения (D) называется:
- 1. отношение общих концентраций вещества в одной и второй фазах;
- 2. разность общих концентраций вещества в одной и второй фазах;
- 3. произведение общих концентраций вещества в одной и второй фазах;
- 4. сумма общих концентраций вещества в одной и второй фазах

- 20.К инструментальным методам анализа относятся:
- 1. физические методы;
- 2. физико-химические методы;
- 3. физические и физико-химические методы;
- 4. химические методы

- 1.Укажите формулу для расчета коэффициента разделения:
- 1. $K_{A/B} = D_A/D_B$; 2. $K_{A/B} = D_A-D_B$; 3. $K_{A/B} = D_A+D_B$; 4. $K_{A/B} = D_A \cdot D_B$
- 2.Отношение равновесной концентрации строго определённой формы вещества в органической фазе к равновесной концентрации этой же формы в водной фазе называется:
- 1. константой распределения;
- 2. коэффициентом распределения;
- 3. константой экстракции;
- 4. степенью однократной экстракции
- 3.К методам разделения и концентрирования, основанным на образовании выделяемым веществом новой фазы относится:
- 1. сорбция; 2. диализ; 3. осаждение; 4. электрофорез
- 4.3начение lgK_P окислительно-восстановительной реакции $2Fe^{3+}+2I^-=I_2+2Fe^{2+}$ равно:
- 1. ЭДС·2/0,059; 2. ЭДС·1/0,059; 3. ЭДС·3/0,059; 4. ЭДС·0,059/2
- 5.Большое численное значение константы равновесия окислительно-восстановительной реакции указывает на то, что:
- 1. равновесие смещено вправо, и реакция идет практически до конца;
- 2. равновесие смещено влево, и реакция идет практически до конца;
- 3. реакция протекает очень быстро;
- 4. реакция протекает очень медленно
- 6. К мембранным методам разделения и концентрирования относится:
- 1. соосаждение; 2. сорбция; 3. электродиализ; 4. электрофорез
- 7. Элементный анализ используется в основном:
- 1. в фазовом анализе;
- 2. в анализе органических веществ;
- 3. в изотопном анализе;
- 4. в биологических методах анализа
- 8. Функциональный анализ используется для:
- 1. установления содержания в атмосфере кислорода, азота и т.д.
- 2. разделения смеси нескольких веществ

- 3. установления состава вновь синтезированных органических веществ
- 4. установления изотопного состава природных объектов
- 9. Разделение катионов по кислотно-основной классификации основано:
- 1. на различной растворимости фосфатов в воде, кислотах, щелочи, водном растворе аммиака;
- 2. на различной растворимости хлоридов, сульфатов и гидроксидов в воде, растворе щелочи, водном растворе аммиака;
- 3. на различной растворимости сульфидов, карбонатов в воде;
- 4. на различной растворимости сульфидов в воде, сильных кислотах и сульфиде аммония
- 10.В кислотно-основной схеме анализа используют групповые реагенты (найти ответ, где даны все групповые реактивы):
- 1.HCI, H₂SO₄, (NH₄)₂CO₃, (NH₄)₂S;
- 2.. NaOH или KOH, H₂O₂, (NH₄)₂CO₃, HCI, HNO₃;
- 3. HCI, H₂SO₄, NaOH или KOH, NH₃;
- 4.. HCI, HNO₃, (NH₄)₃ PO₄, NH₃
- 11.В качестве групповых реагентов в сероводородном систематическом методе анализа применяют:
- 1. сульфид аммония, сероводород и карбонат аммония;
- 2. растворы кислот и щелочей;
- 3. фосфат натрия или аммония;
- 4. фосфат натрия и растворы кислот
- 12. Катионы в кислотно-основной классификации делят:
- 1. на 3 группы; 2. на 4 группы; 3. на 5 групп; 4. на 6 групп
- 13. Из приведенных окислителей имеет восстановленную форму, являющуюся наиболее слабым восстановителем:
- 1. KIO₄ (E⁰(IO₄-/I-) = +1,28 B);
- 2. NaBiO₃(E⁰(BiO₃⁻/Bi³⁺) = +1,80 B);
- 3. KMnO₄ (E⁰(MnO₄²⁻/Mn²⁺) = +1,51 B);
- 4. $(NH_4)_2S_2O_8$ $(E^0(S_2O_8^-/2SO_4^{2-}) = +2,01 B)$
- 14. Координационное число равно числу лигандов для комплексов частиц с:
- 1. бидентантнымилигандами;
- 2. монодентантнымилигандами;
- 3. полидентантнымилигандами;
- 4. любыми лигандами
- 15.Летучие соединения щелочного металла натрия окрашивают пламя горелки (пирохимический анализ) в:
- 1. карминово-красный цвет;
- 2. желтый цвет;
- 3. фиолетовый цвет;
- 4. зеленый цвет

- 16. Кирпично-красный осадок образуется при взаимодействии ионов серебра с раствором:
- 1. хлорида калия;
- 2. бромида калия;
- 3. хромата калия;
- 4. иодида калия
- 17.Обнаружить ион аммония можно при взаимодействии соли аммония с раствором:
- 1. карбонатом калия;
- 2. гидротартрата натрия;
- 3. гидроксида натрия;
- 4. гидрофосфата натрия
- 18.Укажите общее свойство сульфатов Ca^{2+} , Ba^{2+} , Sr^{2+} :
- 1. растворимы в избытке аммиака;
- 2. растворимы в НСІ;
- 3. растворимы в избытке NaOH;
- 4. не растворимы в сильных кислотах и щелочах
- 19.8-гидроксихинолин образует с ионами магния кристаллический осадок:
- 1. зеленовато-желтого цвета;
- 2. фиолетового цвета;
- 3. белого цвета;
- 4. кирпично-красного цвета
- 20.Величина, показывающая, во сколько раз изменяется отношение абсолютных количеств микро- и макрокомпонента в концентрате по сравнению с исследуемой матрицей, называется:
- 1. коэффициентом разделения;
- 2. коэффициентом распределения;
- 3. коэффициентом концентрирования;
- 4. коэффициентом экстракции

- 1.Иодид калия образует с ионами висмута (III) осадок:
- 1. красного цвета;
- 2. черного цвета;
- 3. зеленого цвета;
- 4. белого цвета
- 2.Для обнаружения первой группы анионов (SO_4^{2-} , SO_3^{2-} , $S_2O_3^{2-}$, CO_3^{2-} , PO_4^{3-} , AsO_4^{3-} , AsO_3^{3-} , BO_2^{-} ,
- F^- , SiO_3^{2-} , $C_2O_4^{2-}$, CrO_4^{2-}) используют групповой реагент:
- 1. раствор НСІ;
- 2. AgNO₃ в азотнокислой среде;
- 3. $BaCI_2$ в нейтральной или щелочной среде;
- 4. KMnO₄ в нейтральной среде
- 3. Раствор нитрата серебра используют для обнаружения следующих ионов:
- 1. SO_4^{2-} , SO_3^{2-} , $S_2O_3^{2-}$; 3. NO_2^{-} , CO_3^{2-} , SO_3^{2-} , $S_2O_3^{2-}$;
- 2. CI⁻, Br⁻, I⁻, S²⁻, SCN⁻4. CH₃COO⁻, NO₂⁻, NO₃⁻

- 4.Предварительное обнаружение анионов-окислителей проводят с помощью следующего реагента:
- 1. BaCI₂ в нейтральной среде;
- 2. I_2 в нейтральной среде;
- 3. AgNO₃ азотнокислой среде;
- 4. KI в присутствии крахмала и разбавленной серной кислоты
- 5.Присутствие анионов-восстановителей можно обнаружить с помощью:
- 1. раствора перманганата калия или иода;
- 2. раствора разбавленной серной кислоты;
- 3. раствора хлорида бария;
- 4. раствора нитрата серебра
- 6. Анионы по классификации, основанной на растворимости солей бария и серебра делятся на:
- 1. 2 группы; 2. 3 группы; 3. 4 группы; 4. 5 групп
- 7. Растворимые соли бария образуют с сульфат-ионами:
- 1. белый аморфный осадок, растворимый в кислотах и щелочах;
- 2. белый кристаллический осадок, растворимый в кислотах и щелочах;
- 3. белый кристаллический осадок, нерастворимый в кислотах и щелочах;
- 4. желтый кристаллический осадок, нерастворимый в кислотах и щелочах
- 8. Разбавленные кислоты с образование CO_2 взаимодействуют с:
- 1. сульфатами; 2. хлоридами; 3. карбонатами; 4. фосфатами
- 9.Использование для идентификации вещества реакций, в результате которых образуются соединения с характерной формой кристаллов, носит название:
- 1. капельный анализ;
- 2. пирохимический анализ;
- 3. дробный анализ;
- 4. микрокристаллоскопический анализ
- 10.Для идентификации спиртов используют реакции:
- 1. электрофильного присоединения;
- 2. окисления;
- 3. восстановления;
- 4. комплексообразования
- 11.Для идентификации фенолов используют:
- 1. реакцию со свежеосажденным гидроксидом меди (II);
- 2. реакцию с хлоридом железа (III);
- 3. реакцию с реактивом Фелинга;
- 4. реакцию с азотистой кислотой
- 12. Реакция с аммиачным раствором оксида серебра при легком нагревании с образованием на внутренних стенках пробирки тонкой пленки металлического серебра («серебряное зеркало») является качественной на:
- 1. гидроксильную группу;

- 2. альдегидную группу;
- 3. карбоксильную группу;
- 4. аминогруппу
- 13.Для идентификации карбоновых кислот используют реакцию с:
- 1. аммиачным раствором оксида серебра;
- 2. катионами тяжелых металлов;
- 3. хлоридом железа (III);
- 4. азотистой кислотой
- 14. Максимальная концентрация вещества в пересыщенном растворе, при которой последний ещё остается устойчивым, называется:
- 1. сверхрастворимость;
- 2. растворимость;
- 3. нерстворимость;
- 4. надрастворимость
- 15.При малых значениях относительногопересыщения преобладает:
- 1. образование небольшого количества крупных кристаллов;
- 2. образование небольшого количества мелких кристаллов;
- 3. образование большого количества мелких кристаллов;
- 4. образование большого количества очень мелких кристаллов
- 16.Укажите процесс, который должен преобладать при осаждении, чтобы получился крупнокристаллический осадок:
- 1. скорость осаждения частиц;
- 2.скорость образования центров кристаллизации;
- 3. скорость роста центров кристаллизации;
- 4. скорость пептизации
- 17. Укажите условие, которое требуется соблюдать, чтобы выпал крупнокристаллический осадок:
- 1.быстро добавлять осадитель;
- 2.медленно добавлять осадитель;
- 3.не оставлять осадки для «старения»;
- 4. фильтровать сразу после осаждения
- 18.Укажите прием, приводящий к полной коагуляции коллоидных систем, а значит и более полному осаждению аморфных осадков:
- 1. медленно добавление осадителя;
- 2. осаждение из горячих растворов;
- 3. «старение» осадка;
- 4.нет правильного ответа
- 19.Основная причина потерь при промывании аморфных осадков водой:
- 1. солевой эффект; 3. пептизация;
- 2. ионизация вещества в растворе; 4. коагуляция

- 20.Титр соответствия это:
- 1. количество вещества (моль) в 1 мл раствора;
- 2. количество вещества (моль эквивалента) в 1 мл раствора;
- 3. масса вещества (г), реагирующего с 1 мл титранта;
- 4. масса вещества (г) в 1000 мл раствора;

Литература

- 1. Начало общей химии 2024 Издательство Лань Санкт Петербург Черникова Н Ю Самошин ВВ
- 2. Неорганическая химия 2024 Издательство Лаборатория знаний МОСКВА Нестерова О.В.
- 3. Общея и неорганическая химия 2024 Издательство Научная школа Санкт Петербург Суворов A В
- 4. Неорганическая химия 2024 Издательство Научная школа Санкт Петербург Щербоков В В
- 5.Хомченко Г.П. Химия для поступающих в ВУЗ М Высшая школа. 2020.
- 6.Пономарев В.Д. Аналитическая химия М Медицин.;. 2021
- 7. Цитович И.К. Курс аналитический химии. М.. Высшая школа. 2022
- 8. Беликов В.Г. Фармацевтическая химия. М.: Высшая школа, 2020 в 2-х частях.
- 9. "Основы аналитической химии" в 2-х книгах. Под ред. Ю.А. Золотова. М.:

Высшая школа, 2020

- 10.Пономарев В.Д. «Аналитическая химия». Москва «Медицина» 2020
- 11. Харитонов Ю.Я., «Аналитическая химия». Москва «Высшая школа», 2020

Интернет – ресурсы, электронные учебные пособия и учебники:

- 1.www.consultant.ru
- 2.www.garant.ru